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Abstract
We study the Euclidean effective action per unit area and the charge density for a
Dirac field in a two-dimensional (2D) spatial region, in the presence of a uniform
magnetic field perpendicular to the 2D plane, at finite temperature and density.
In the limit of zero temperature we reproduce, after performing an adequate
Lorentz boost, the Hall conductivity measured for different kinds of graphene
samples, depending upon the phase choice in the fermionic determinant.

PACS numbers: 11.10.Wx, 02.30.Sa, 73.43.−f

Graphene is a bidimensional array of carbon atoms, packed in a honeycomb crystal structure.
Actually, each layer of a graphene sample can be viewed as either an individual plane extracted
from graphite or else an array of unrolled carbon nanotubes. Stable mono-, bi- and multi-layer
samples of such a material have been, recently and independently, obtained by two groups
[1, 2], and a surprising behaviour of the Hall conductivity and related density of states in
mono-layer samples has been unravelled. Even more recently, an equally unexpected, though
different, behaviour was reported [3] for bi-layer samples.

The most remarkable feature of graphene’s structure, from the theoretical point of view, is
that its quanta or quasi-particles behave as two species (to account for the spin of the elementary
non-relativistic constituents) of massless relativistic Dirac particles in the two non-equivalent
representations of the Clifford algebra (which correspond to the two non-equivalent vertices in
the first Brillouin zone [4, 5]) with an effective ‘speed of light’ about two orders of magnitude
smaller than c.

To the best of our knowledge, the first approach to the quantum Hall effect in terms of a
quantum relativistic Dirac field theory, at finite temperature and chemical potential, appeared
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in [6], where a dimensional reduction argument was used. Later on, the relativistic Hall
conductivity was obtained in [7, 8] using Green’s function methods (for an entirely different
calculation see, e.g., [9]). In [6–8], the divergent series were regularized through definitions
which, as we will explain, are equivalent to neglecting the phase of the determinant. In the
zero temperature limit, the results of [6–8] reproduce the unexpected behaviour of both the
Hall conductivity and the density of states, as measured in mono-layer graphene [1, 2].

In a couple of papers [10, 11], two of the authors of the present paper developed a finite
temperature field theory calculation based upon the ζ -function regularization of the Dirac
determinant, and obtained the partition function and the related Hall current and density of
states. There, the phase of the determinant was included, and its sign fixed according to the
conventional wisdom [12], which lead to a Hall conductivity displaying a plateau around zero
chemical potential.

It is the aim of this paper to show that, in turn, the inclusion of the phase of the determinant
with the opposite sign leads to a Hall conductivity and to a zero-temperature density of states
which coincide with those recently reported in the case of bi-layer graphene [3], while the
behaviour of mono-layer graphene is reproduced when the phase is ignored, in coincidence
with the results in [6–8].

In order to study the temperature-dependent effects for the system at hand, we will
consider the three-dimensional (3D) Euclidean space, with metric (+, +, +) and coordinates
(x, y, τ = −it), the γ -matrices γi = σi, i = 1, 2, 3, and introduce the chemical potential as an
imaginary component of the gauge potential [13]. Then, we will let the Euclidean imaginary
time coordinate vary according to 0 � τ � β, where β = 1/kBT , kB is the Boltzmann
constant, and impose antiperiodic boundary conditions on the Dirac field to reproduce Fermi–
Dirac statistics. As is well known, another faithful non-equivalent representation of the
Clifford algebra exists in odd dimensions, in which one of the gamma matrices changes sign
(or, equivalently, all of them do so). We will comment about the consequences of such a
change of representation, wherever adequate, throughout the rest of the paper.

Once some suitable regularization has been introduced, the partition function in the
grand-canonical ensemble is given by

ln Z ≡ ln det(D) = ln det(i∂/ + eA/), (1)

where −e is the electron charge. In order to evaluate the partition function in the zeta
regularization approach [14], we must determine the spectral resolution of the Euclidean
Dirac operator, in the presence of a gauge potential Aµ = (0, Bx, iµ/e), which corresponds
to the selection of a non-symmetric gauge for the magnetic field orthogonal to the plane; in the
following B > 0. Here below we just report the main results; for a detailed calculation, see
e.g. [10, 11]. The equation to be solved is (from here on, natural units are used, i.e. h̄ = c = 1,
unless explicitly stated)

[σ1i∂x + σ2(i∂y + eBx) + σ3(i∂τ + iµ) − ω]� = 0.

After writing

�k,l(x, y, τ ) = (2πβ)−1/2 exp{iky + iτλl}ψk,l(x),

where

ψk,l(x) =
ϕk,l(x)

χk,l(x)

 , k ∈ R,

and

λl = (2l + 1)(π/β), l ∈ Z;
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in order to satisfy the antiperiodic boundary conditions, one finds two types of eigenvalues
and corresponding sets of eigenfunctions.

Type [I]. Asymmetric part of the spectrum

ωl = −(2l + 1)π/β + iµ, l = −∞, . . . ,∞.

The corresponding eigenfunctions are quite particular, in that they are eigenfunctions of
σ3 with the eigenvalue +1, the ones in the orthogonal subspace being indeed eliminated by
the square-integrability condition (for some related references, see, for instance, [15]). As
a consequence, the corresponding eigenvalues ωl are not the square roots of the eigenvalues
of D†D. They will eventually lead to a spectral asymmetry and, thereby, to a phase of the
determinant, which will be studied in detail below.

Type [II]. Symmetric part of the spectrum

ω±
l,n = ±

√
λ̃2

l + 2neB, n = 1, . . . ,∞, l = −∞, . . . ,∞.

For both kinds of eigenfunctions, the degeneracy per unit area is given by the well-known
Landau factor �L = eB/2π.

It is worthwhile to remark that, had we chosen the other non-equivalent representation
of the γ -matrices, the eigenvalues of type [I] would have changed their sign, and the
corresponding eigenfunctions would have been eigenfunctions of σ3 with the eigenvalue −1.
However, as will be discussed below, this fact will not lead to any modification in our physical
predictions as long as µ is real. Thus, considering the contributions of both non-equivalent
representations will amount to an overall factor of 2.

When parity is defined as, e.g., in [16], it is easy to check that, for a general Dirac
operator, the effect on the spectrum is ωP = −ω. This symmetry is obviously respected by
the symmetric part [II] of our spectrum, while it actually produces a change in the sign of
the asymmetric portion [I]. When acting on the latter, it is equivalent to µ → −µ and, thus,
to charge conjugation (ψ(x) → γ2ψ

∗(x), Aν(x) → −A∗
ν(x), ω → ωC = ω∗). So, parity

is broken already at the classical level if only one representation of the gamma matrices is
considered, due to the square-integrability condition.

If complex values of µ are allowed, the whole spectrum has an interesting symmetry:
it turns out to be invariant under µβ → µβ + 2π ik, k ∈ Z, which is nothing but the
symmetry under ‘large’ gauge transformations. The conflict between this last symmetry
and parity invariance in different regularization schemes is well known [17], and it created
some controversy in the past [16, 18, 19].

In this paper, we will concentrate on the case of a real chemical potential µ. A discussion
of both symmetries in the case of a complex chemical potential will be reported elsewhere
[20].

Starting from the above-described spectrum, we shall evaluate, according to (1), the
Euclidean effective action per unit area (in the statistical mechanics terminology, the latter
coincides with the grand-potential per unit area in units of kBT ). From this effective action,
the mean fermionic number per unit area, NF, and, thus, the charge density can be retrieved as
follows:

Seff = log Z ≡ ln det(D), NF = β−1 ∂Seff

∂µ
. (2)

Here, the symbol ≡ stands for the definition through an adequate regularization. For the
reasons we have just explained (namely, all the eigenvalues are paired), it turns out that the
contribution to the effective action coming from the symmetric part [II] of the spectrum does
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not suffer from regularization ambiguities. For instance, after a proper definition in terms of
the ζ -regularization [10], it is given by

SII
eff = �L

[
βζR(−1/2)(2eB)1/2 +

∞∑
n=1

log{(1 + z e−βεn)(1 + z−1 e−βεn)}
]

(3)

with z := exp{βµ}, εn ≡ √
2neB.

The contribution to the effective action arising from the asymmetric part [I] of the spectrum
is given by the formal expression

SI
eff = �L

∞∑
l=0

log {(−1)[(2l + 1)π/β − iµ] × [(2l + 1)π/β + iµ]} . (4)

Choosing a symmetric regularization, as done in [6–8], is equivalent to ignoring the infinite
term

∑∞
l=0 log(−1), which reduces the previous expression to

SI
eff = �L

∞∑
l=0

log{[(2l + 1)π/β]2 + µ2},

i.e. one evaluates the logarithm of the ‘absolute value’ of the Euclidean Dirac operator which,
once regularized, leads to

SI
eff = �L log [2 cosh(µβ/2)]. (5)

However, a first-principle ζ -function regularization of the determinant unavoidably drives to
a careful definition of the phase of the determinant, which is equivalent to the selection of a
cut in the complex plane of the eigenvalues [21], when the asymmetric part of the spectrum is
treated. Going back to the formal relation (4), we define it in a proper mathematical sense in
terms of the ζ -function regularization, namely,

SI
eff := −�L

d

ds

⌋
s=0

{ ∞∑
l=0

[
(2l + 1)

π

β
+ iµ

]−s

+
∞∑
l=0

[
e±π i(2l + 1)

π

β
+ iµ

]−s
}

,

the phase of the determinant being fixed by the cut in the complex plane of the eigenvalues
[22]. More explicitly, we can write

SI
eff := −�L

d

ds

⌋
s=0

{ ∞∑
l=0

[
(2l + 1)

π

β
+ iµ

]−s

+
∞∑
l=0

e−isθ

[
(2l + 1)

π

β
+ iµ e−iθ

]−s
}

,

where −π � θ � π. The prescription usually adopted [12] amounts to choosing the cut in such
a way that the expression in the last square bracket never vanishes, as one goes continuously
from the eigenvalues with a positive real part to the eigenvalues with a negative real part,
i.e. (2l + 1)π/β + µ sin θ and µ cos θ do not simultaneously vanish (which could happen if
µ = (2l + 1)π/β and θ = −π/2 or µ = −(2l + 1)π/β and θ = π/2). This requires that
the cut is chosen below (above) the real axis when µ is positive (negative), which gives for
the final value θ = πsignµ. With this choice, the contribution of the asymmetric part of the
spectrum—see [10] for more details—to the effective action is given by

SI
eff = �L

[
−1

2
β|µ| + log

(
2 cosh

µβ

2

)]
. (6)

The opposite, and less popular, definition of the phase would lead to

SI
eff = �L

[
1

2
β|µ| + log

(
2 cosh

µβ

2

)]
. (7)
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At this point, it is important to stress (always in the case of a real chemical potential)
that exactly the same results are obtained, provided the same criteria are applied, if the
other non-equivalent representation for the γ -matrices is chosen. Thus, the inclusion of both
contributions amounts to an overall factor of 2 if the phase is consistently chosen in both
representations. In this sense, the exclusion of the phase is equivalent to the adoption of
opposite criteria for the phase selection in both representations.

Putting together the contributions from the symmetric part (3) and the asymmetric part
of the spectrum (5), (6) or (7), depending on the phase definition adopted, we come to the
following expression for the ζ -function definition of the Euclidean effective action:

Seff = �L

{
log

(
2 cosh

µβ

2

)
+

1

2
κβ|µ| + βζR(−1/2)

√
2eB

+
∞∑

n=1

log [(1 + z e−βεn)(1 + z−1 e−βεn)]

}
,

κ = 0,±1, z = exp{βµ}, εn =
√

2neB.

Here, κ = 0 corresponds to a vanishing phase, κ = −1 to the usual phase choice and κ = +1
to the opposite and unusual phase choice. Note that εn is the absolute value of the nth non-
vanishing Landau level. In all cases, the Euclidean effective action is an even function of µ.
Thus, it is invariant under charge conjugation and parity.

Also in all the cases, the mean fermionic number per unit area turns out to change sign
under µ → −µ. In fact, from its very definition in (2), we get

N(κ;β,µ) = �L

{
1

2
tanh

µβ

2
+

1

2
κsgn(µ)

+
∞∑

n=1

[
1 + eβ

√
2neB−µβ

]−1 −
∞∑

n=1

[
1 + eβ

√
2neB+µβ

]−1

}
.

Note that the first two terms are those coming from the asymmetric part of the spectrum.
So no matter how one defines the phase of the determinant, at any finite temperature there
is a kind of parity breaking charge, which is the sum of a µ-analytic contribution (the first
term) and a non-analytic one (the phase of the determinant). In the zero temperature limit, for
n < µ2/2eB < n + 1, we finally obtain

lim
β→∞

N(κ;β,µ) =
(

n +
1 + κ

2

)
sgn(µ)�L. (8)

In this limit, the contribution of the asymmetric part of the spectrum is that corresponding
to n = 0, and is non-analytic in all cases. It only vanishes so that parity and charge conjugation
symmetries are indeed fulfilled, for the most commonly accepted selection of the phase
κ = −1.

Moreover, it is easy to check that Nernst’s theorem holds true for any κ. Actually, it turns
out that the entropy can be obtained from the well-known Boltzmann–von Neumann formula

S(β,µ;B, κ) = kB

(
1 − β

∂

∂β

)
Seff,

whence, one can verify by direct inspection that, indeed,

lim
β→∞

S(β,µ;B, κ) = 0, ∀ κ = 0,±1,

in agreement with Nernst’s theorem.
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From (8), the mean value of the charge density in the zero temperature limit can be
immediately obtained for one representation and one fermion species. Turning back to
physical units, and recalling that the particle charge is −e, we find

Jτ (κ;β,µ) = −eNF(κ;β,µ)
β→∞−→ −sgn(µ)

(
n +

1 + κ

2

)
e2B

hc
,

for n < (µ2/2eBh̄c2) < n + 1, n ∈ N,

the spatial components of the current density being equal to zero in the absence of electric fields.
Now, the zero temperature limit of the same vector in the presence of crossed homogeneous
electric E′ and magnetic B ′ fields can retrieved, for E′ < B ′, by performing a Lorentz
boost with an absolute value of the velocity v = cE′/B ′. Suppose, for definiteness, that the
homogeneous electric field points towards the positive Oy-axis. Then the speed of the Lorentz
boost must point towards the negative Oy-axis and the transformation law gives, as a result,

J ′
τ (κ;µ) = −e2B ′

hc

(
n +

1 + κ

2

)
sgn(µ),

J ′
x(κ;µ) = −e2E′

h

(
n +

1 + κ

2

)
sgn(µ),

J ′
y(κ;µ) = 0,

for n < (µ2/2eBh̄c2) < n+1, n ∈ N. As a consequence, the contribution to the quantized Hall
conductivity at zero temperature becomes, for each representation and each fermion species,

σxy = −e2

h

(
n +

1 + κ

2

)
sign(µ), n ∈ N.

As explained throughout the paper, this result must be multiplied by an overall factor of
4, in order to make contact with the relativistic effective theory associated with graphene
[4, 5]. It is interesting to remark that the three values of the phase correspond to three different
vacuum polarization (Casimir-type) effects due to the interaction with the magnetic field at
zero temperature. More precisely, the quantum (in the field-theory sense) filling factor is
given, in each of the three cases, by

νQ = −J ′
τ hc

e2B ′ =
(

n +
1 + κ

2

)
. (9)

The (rescaled) Hall conductivity is presented in figure 1, for the three values of κ , as a
function of νC = sgn(µ)µ2/2eBh̄c2, which is nothing but the classical density of carriers in
the relativistic theory, divided by the total degeneracy of each Landau level.

It is well known that any regularization procedure is acceptable, unless either it manifestly
violates some of the symmetries of the system or it is ruled out by the experimental data. So,
the measured Hall conductivities of graphene as reported, for instance, in [3], should shed
light on the relevance (or lack thereof) of the different phases of the determinant.

On these grounds, the first and clearer conclusion of this paper is that the behaviour of
monolayer graphene, as presented not only in [3] but also in [1, 2], corresponds to κ = 0,
i.e. to not including the phase of the determinant, as done in [6–8]. In fact, in this case the
(rescaled) Hall conductivity shows a jump of height 1 for νC = 0 and further jumps of the
same magnitude for νC = ±1,±2, . . ..

Let us now compare our predictions with the contents of [3], which is devoted to bilayer
graphene. In this case, the (rescaled) Hall conductivity presents a jump of height 2 for
νC = 0 and further jumps of height 1. The main point here concerns the positions of these
subsequent jumps. As a matter of fact, according to figure 1.b in the same reference, these
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Figure 1. Hall conductivity for different selections of the phase of the determinant. Top to bottom:
κ = 0, κ = 1, κ = −1. In all cases, the horizontal axis represents νF = sgn(µ)µ2/2eBh̄c2 and
the vertical one, σxyh/4e2.

subsequent jumps appear for νC = ±1,±2, . . ., which is exactly the behaviour predicted, in
our calculation, for κ = +1 (the less popular selection of phase in the Dirac determinant).
However, the same reference interprets the Hall behaviour of bilayer graphene through a
theoretical prediction first made in [23], where the theory is ‘almost’ non-relativistic, with
a Landau spectrum given by En = ± eBh̄

m

√
n(n − 1). This last model does, indeed, predict

a double jump for νC = 0, due to the existence of two zero modes in each representation.
But, for the very same reason, the next jump should appear, in this theoretical scenario, at
νC = ±√

2 ∼ ± 3
2 (for a related discussion see, for instance, [24]). As stressed by the

authors, figure 1.b in [3] is only schematic. However, the experimental results corresponding
to B = 12T in figures 2.b and 2.c of the same reference also tend to confirm the prediction of
our relativistic quantum field calculation, with κ = 1 (unusual phase), where the next jumps
occurs at νC = ±1. The text in the same reference also seems to confirm our prediction,
since the distance between jumps is said to be, always for B = 12T ,�n ∼ 1.2 × 1012 cm−2,
which corresponds to �νC = �n h

4eB
∼ 1, the same for all jumps. However, the experimental

results corresponding to B = 20T seem to agree with the width of the first plateau being
approximately 1.3 times the width of the subsequent ones. Thus, a further experimental study
of bilayer graphene is crucial in distinguishing both theoretical scenarios.

At this point, one can naturally wonder whether there is place at all for the usual selection
of phase (κ = −1) in the description of graphene samples. It is quite interesting to gather
that the three non-equivalent phase selections correspond to the three non-equivalent unitary
representations of the cyclic group C3, which is precisely the relevant symmetry group for
graphene. Even though the study of the Hall conductivity in graphene samples with three
layers [25] is certainly far from being conclusive, they seem to indicate that a quantum Hall
effect does occur in such devices, with a plateau at νC = 0. Does the usual phase selection
correspond to the behaviour of three-layered graphene?
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In any case, from a theoretical point of view, further experiments on graphene samples
can give an answer to a long-standing question in the field of the ζ -function regularization,
i.e. which phase must be selected in the definition of Dirac determinants, in order to evaluate
effective actions?
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